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Cope’s Rule states that the size of species tends to increase along an evolutionary lineage. A basic statistical framework is elucidated

for testing Cope’s Rule and some surprising complications are pointed out. If Cope’s Rule is formulated in terms of mean size, then

it is not invariant to the way in which size is measured. If Cope’s Rule is formulated in terms of median size, then it is not invariant

to the degree of separation between ancestral and descendant species. Some practical problems in assessing Cope’s Rule are also

described. These results have implications for the empirical assessment of Cope’s Rule.
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Cope’s Rule states that the body size of species tends to increase

along an evolutionary lineage. There has been a continuing dis-

cussion in the literature about the validity of Cope’s Rule and its

possible causes. It is not our intention to review this literature here.

A small sample of relevant references are Newell (1949), Stan-

ley (1973), LaBarbera (1986), McKinney (1990), McShea (1994),

Gould (1997), and Jablonski (1997). In a widely cited contribution

to this area, Alroy (1998) presented a statistical analysis of Cope’s

Rule. Briefly, this involved collecting body mass estimates for a

large number of pairs of species in which one species is known

or believed to be ancestral to the other. Alroy used these data to

test the two related null hypotheses that the mean and median

of the difference in log body mass between a descendant species

and its ancestor are 0 against the alternative hypotheses that they

are greater than 0. The first hypothesis was tested via a t test and

the second via a sign test. In both cases, the null hypothesis was

rejected, confirming Cope’s Rule.

The purpose of this article is to elucidate a basic framework

for the statistical analysis of Cope’s Rule and to point out some

surprising implications of it. Specifically, we show that, if Cope’s

Rule is formulated in terms of mean size, then its validity does not

depend on the number of speciation events separating an ancestor–

descendant pair, but can depend on the way in which size is mea-

sured (e.g., body mass, body length). If instead Cope’s Rule is for-

mulated in terms of median size, then its validity does not depend

on the way in which size is measured, but can depend on the num-

ber of speciation events separating an ancestor–descendant pair.

We also point out some practical obstacles to assessing Cope’s

Rule by comparing the sizes in ancestor–descendant pairs. Al-

though the results presented here are somewhat technical, they

have important implications for Cope’s Rule and its empirical

assessment.

Results
A MEAN SIZE FORMULATION OF COPE’s RULE

Let S denote a specific measure of size (e.g., log body mass) and

let . . .Sj−2, Sj−1, Sj, . . . be the sizes for species somewhere along

an evolutionary lineage, where species j − 2 is the direct ancestor

of species j − 1 that is the direct ancestor of species j and so on. We

will use the term “degree of separation” to denote the difference in

rank between species along a lineage. For example, the degree of

separation between species j − 2 and species j − 1 is 1, whereas the

degree of separation between species j − 2 and species j is 2. We
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will treat the sequence of sizes as a stochastic process and assume

that it obeys the Markov property that the conditional distribution

of the size of a species given the sizes of a set of its ancestors

depends only on the size of the most recent ancestor in the set.

The Markov property simplifies, but is not central to, the results

of this article.

As in Alroy (1998), suppose that interest centers on testing the

validity of Cope’s Rule using the sizes in a collection of ancestor–

descendant pairs. A natural formulation of the null hypothesis

under which Cope’s Rule does not hold is

E(Sj | s j−1) = s j−1, (1)

where E(Sj | sj−1) is the conditional mean of Sj given that

Sj−1 = sj−1. The corresponding alternative hypothesis under which

Cope’s Rule holds is

E(Sj | s j−1) > s j−1. (2)

Under the null hypothesis (1), the size of a species is, on average,

equal to the size of its direct ancestor, whereas under the alternative

hypothesis (2) it is, on average, larger.

Importantly, together with the Markov property, (1) implies

that E(Sj | sj−k) = sj−k for all k and similarly (2) implies that

E(Sj | sj−k) > sj−k for all k. These results are important in em-

pirical work, such as Alroy (1998), where a direct ancestral rela-

tionship in an ancestor–descendant pair cannot be assumed. They

ensure that the mean formulation of Cope’s Rule does or does

not apply to an ancestor–descendant pair of arbitrary degree of

separation according to whether it does or does not apply to a di-

rect ancestor–descendant pair. Unfortunately, as discussed below,

lack of knowledge of the degree of separation poses a practical

problem for assessing the mean formulation of Cope’s Rule.

Consider now a nonlinear, monotonically increasing function

g and let

T = g(S). (3)

The function g can be thought of as a change in measurement

scale, so that T is itself a measure of size. A problem with the

mean size formulation of Cope’s Rule is that it is not invariant to

the scale at which size is measured. For example, suppose that,

conditional on sj−1

Sj = s j−1 � ε j (4)

where � > 0. Under this multiplicative model, to which we will

return repeatedly, the size of a species (as measured by S) is equal

to the product of the size of its direct ancestor, a constant factor

�, and a random factor ε j. As a concrete example, suppose that ε j

has an exponential distribution with mean 1 so that E(Sj |sj−1) =
� sj−1. Now, take Tj = log Sj. It is straightforward to show in this

case that, conditional on tj−1, Tj has a Gumbel distribution with

mean

E(Tj | t j−1) ∼= log � + t j−1 − 0.577. (5)

Thus, for 1 < � ≤ exp (0.577), the mean size formulation of

Cope’s Rule holds for S but not for T . We emphasize that the

exponential model is used here purely for convenience. The same

kind of result can be shown to hold for other models.

More generally, suppose that Cope’s Rule does not hold for

some size measure S. In that case, by the so-called delta method

(e.g., Oehlert 1992)

E(Tj |tt− j ) ∼= t j−1 + g′′ (s j−1)

2
�2, (6)

where g′′ (sj−1) is the second derivative of g evaluated at sj−1

and �2 is the conditional variance of Sj given sj−1. Thus, if the

function g is concave (i.e., g′′ > 0), then Cope’s Rule will hold

for the size measure T . A similar argument shows that, if Cope’s

Rule holds for size measure S, then there exist functions g that

are convex (i.e., g′′ < 0) for which Cope’s Rule does not hold

for T .

At a theoretical level, it seems natural to require that Cope’s

Rule (or any general statement about body size) should be invari-

ant to monotonically increasing transformations of a measure of

size, such transformations being themselves measures of size. The

mean formulation of Cope’s Rule does not exhibit this invariance.

As a consequence, whether this formulation holds can depend on

the way in which size is measured. This is not simply a question of

whether a logarithmic transformation is applied, for the question

remains: applied to what?

It would be useful to have a real example in which Cope’s Rule

holds for one measure of size, but not for another. Unfortunately,

published datasets of the kind needed to show this (i.e., multiple

size measurements for each of a collection of ancestor–descendant

pairs) do not seem to be available. However, the following real

situation is one in which this problem could arise. Two measures

of body size that have been used to investigate Cope’s Rule are log

body mass (e.g., Alroy 1998) and log body length (e.g., Hone et al.

2005). MacFadden (1986) found that, for fossil horses, head–body

length is linearly related to log body mass. In terms of the previous

notation, this implies that T = exp (S) where T denotes log body

mass and S denotes the log of (linearly rescaled) length. Suppose

that Cope’s Rule does not hold for S. In that case, (6) implies that

the conditional mean of Tj given tj−1 is approximately tj−1(1 +
�2/2) where �2 is the conditional variance of Sj given sj−1, so

that, in contrast to S, Cope’s Rule holds for T . To be sure, we are

making no claim about fossil horses, but merely pointing out a

real situation in which a nonlinear relationship between equally

reasonable measures of size raises the possibility of contradictory

results regarding Cope’s Rule.
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An obvious way to avoid this problem is to narrow the state-

ment of the mean formulation of Cope’s Rule to a specific size

measure, recognizing that the results may be different for other

measures. Unfortunately, a practical problem remains. Suppose

that the multiplicative model in (4) holds for size measure S and

that the measure of interest is taken to be log S. Consider an

ancestor–descendant pair with degree of separation k. It is straight-

forward to show that, conditional on sj−k

log Sj − log s j−k = k log � +
j∑

i= j−k+1

log εi . (7)

Finally, suppose that log ε i is normally distributed with mean 0

and variance �2 for all i. Under the null hypothesis that Cope’s

Rule does not hold, the mean of the difference log Sj − log sj−1

is 0. If the degrees of separation between all ancestor–descendant

pairs in a collection are the same, then the null hypothesis can be

tested by the one-sample t test as in Alroy (1998).

The situation is different if, as in practice, the degrees of

separation between the ancestor–descendant pairs in a collection

cannot be assumed to be the same. Let kj be the degree of separa-

tion in pair j. In this case, (7) has the form of a regression (through

the origin) of log Sj − log sj−1 on kj with nonconstant variance

kj�
2. The previous t test is not valid in this case because it fails

to account for nonconstant variance. The degree to which this is

a problem will depend on how variable the degrees of separa-

tion are. If the degree of separation is known for each pair, then

a valid test can be carried out via weighted least squares (Seber

1977). In practice, the degrees of separation are not known. One

option in this case is to use the estimated age difference between

the ancestral and descendant species as a proxy for the degree of

separation. However, this approach is certainly quite crude and

cannot be recommended without further study.

A MEDIAN SIZE FORMULATION OF COPE’s RULE

A formulation of Cope’s Rule that does not depend on the way in

which size is measured can be based on the conditional median of

the size of a species given the size of its direct ancestor. Under this

formulation, the null hypothesis under which Cope’s Rule does

not hold is

med (Sj |s j−1) = s j−1 (8)

where med denotes the median. This is equivalent to the condition

prob (Sj > sj−1) = 1/2. The alternative hypothesis under which

Cope’s Rule holds is

med (Sj | s j−1) > s j−1 (9)

or equivalently prob (Sj > sj−1) > 1/2. This formulation underlies

the sign test used by Alroy (1998) and others.

Because

med (g(Sj )|g(s j−1)) = g (med(Sj |s j−1)) (10)

for any monotonically increasing function g, this formulation of

Cope’s Rule is invariant to monotonically increasing transforma-

tions of a measure of size. There is, however, a different problem

with the median size formulation of Cope’s Rule. Surprisingly,

the null hypothesis in (8) does not guarantee that med (Sj |sj−k) =
sj−k for k > 1, nor does the alternative hypothesis in (9) ensure

that med (Sj | sj−k) > sj−k for k > 1. That is, in general, the me-

dian formulation of Cope’s Rule is not invariant to the degree of

separation in an ancestor–descendant pair.

Consider again the multiplicative model (4), but now suppose

that the random factor ε j has median 1, so that med (Sj | sj−1) =
� sj−1. The median formulation of Cope’s Rule holds if � > 1. It

follows from (4) that conditional on sj−k

S j = s j−k �k
j∏

i= j−k+1

εi (11)

so that med (Sj | sj−k) = �k
sj−k med (

∏j

i=j−k+1εi). What can be

said about med (
∏j

i=j−k+1εi)? It is straightforward to show that, if

the distribution of log ε j is symmetric (by assumption, the point

of symmetry being 0), then the median of
∏j

i=j−k+1εi is 1 and the

median formulation of Cope’s Rule is invariant to the degree of

separation. That is, under this symmetry assumption, the median

formulation of Cope’s Rule does or does not apply to an ancestor–

descendant pair of arbitrary degree of separation according to

whether it does or not apply to a direct ancestor–descendant pair.

Beyond the symmetric case, general results regarding the

median of the product of random variables are not available (e.g.,

Rathie and Rohrer 1987). To illustrate what can happen, suppose

that ε j has an exponential distribution with median 1. The corre-

sponding Gumbel probability density function of log ε j, which is

shown in Figure 1, is mildly negatively skewed. Numerical calcu-

lation shows that in this case med (ε j−1 ε j) ∼= 0.82 and med (ε j−2

ε j−1 ε j) ∼= 0.67. So, for example, if � = 1.1, the conditional median

size of a species is 10% greater than the size of its direct ancestor,

equal to the size of its ancestor of degree 2, and 12% smaller than

the size of its ancestor of degree 3. It follows that size will tend to

increase in a collection of direct ancestor–descendant pairs, tend

to remain constant in a collection of pairs of degree 2, and tend to

decrease in a collection of pairs of degree 3.

As before, the exponential model is used here solely for

its convenience. In this case, it is also possible to show some

results based on real data. Figure 2 shows a kernel estimate

(Silverman 1986) of the probability density function of the differ-

ence in log body mass for 24 ancestor–descendant pairs of fossil

horses provided by MacFadden (1986). The estimated density,

which was based on a Gaussian kernel with bandwidth 0.125, is
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Figure 1. Probability density function of the logarithm of an ex-

ponential random variable with median 1.

mildly negatively skewed and, indeed, is similar in shape to the

Gumbel density in Figure 1. However, as discussed below, there

is a problem in interpreting this result.

Suppose again that the multiplicative model in (4) holds for a

specific size measure S and that med (ε j) = 1. As noted, the prob-

lem with the median size formulation of Cope’s Rule is avoided if

it can be assumed that log ε j has a symmetric distribution. It may

seem at first glance that this assumption can be checked through

the empirical distribution of the differences in log size in ancestor–

descendant pairs as in Figure 2. This would be true if the degree

of separation in all such pairs was 1. In that case, it follows from

(7) that log Sj − log sj−1 = log � + log ε j, so that the density of

this difference is symmetric around log � if and only if the den-

Figure 2. Kernel estimate of the probability density function of

the difference in log body mass for fossil horses.

sity of log ε j is symmetric around 0. Otherwise, the situation is

more complicated. For example, suppose that the degree of sep-

aration in all ancestor–descendant pairs is equal to k with k > 1.

Provided k is not too small, the Central Limit Theorem ensures

that the distribution of log Sj − log sj−k is approximately normal

(and therefore symmetric) with mean k log � and variance k�2

irrespective of the distribution of log ε j. Thus, it is not possible to

infer symmetry of log ε j from symmetry of log Sj − log sj−k. On

the other hand, because the sum of independent random variables

each symmetric around 0 is also symmetric around 0, asymmetry

of this difference does imply asymmetry of log ε j. The situation

is worse in the realistic case in which the degree of separation

varies among the ancestor–descendant pairs. Briefly, in this case,

the distribution of log size differences follows a mixture of distri-

butions that differ in mean, variance, and possibly shape. In this

case, the shape of the distribution of the log size differences can-

not be assumed to provide any information about the shape of the

distribution of log ε j.

Discussion
Existing methods for assessing Cope’s Rule appear to be based

implicitly on the following argument. There is a correct size mea-

sure S that follows the multiplicative model in (4) with ε normal

(or symmetric) with mean 0. Moreover, this measure is known.

It then follows that the difference in log size is also normal, so

that either a t test or sign test can be used to assess the validity of

Cope’s Rule. In the context of this argument, which is not on its

face unreasonable, we have pointed out (1) that the assumption

that the correct size measure is known is not innocuous because

the result of the t test can be different for other size measures; (2)

that even if the assumptions are valid, the t test is not valid if the

degree of separation in the ancestor–descendant pairs varies; (3)

that the assumption that ε is normal (or symmetric) is not innocu-

ous because the result of the sign test can depend on the degrees

of separation among the ancestor–descendant pairs; and (4) that

it is not possible to assess normality (or symmetry) from the em-

pirical distribution of the differences in log size when the degree

of separation varies among the ancestor–descendant pairs.

As a practical matter, where does this leave the assessment

of Cope’s Rule? Arguably, among existing methods, the best case

can be made for testing the median formulation via the sign test

assuming that the multiplicative model in (4) holds with symmetry

at the log scale. Under this assumption, the results are invariant

both to nonlinear transformation of the measurement scale and to

the degree of separation in the ancestor–descendant pairs. It needs

to be recognized, however, that the symmetry assumption—which

is not invariant to nonlinear transformation of the measurement

scale—cannot be checked.
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